Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
< >
page |< < (28) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="87">
          <p>
            <s xml:space="preserve">
              <pb o="28" file="0167" n="167" rhead="DE CENTRO GRAVIT. SOLID."/>
            uel coni portionis axis à centro grauitatis ita diui
              <lb/>
            ditur, ut pars, quæ terminatur ad uerticem reli-
              <lb/>
            quæ partis, quæ ad baſim, ſit tripla.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Sit pyramis, cuius baſis triangulum a b c; </s>
            <s xml:space="preserve">axis d e; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">gra
              <lb/>
            uitatis centrum _K_. </s>
            <s xml:space="preserve">Dico lineam d k ipſius _K_ e triplam eſſe.
              <lb/>
            </s>
            <s xml:space="preserve">trianguli enim b d c centrum grauitatis ſit punctum f; </s>
            <s xml:space="preserve">triã
              <lb/>
            guli a d c centrũ g; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">trianguli a d b ſit h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iungantur a f,
              <lb/>
            b g, c h. </s>
            <s xml:space="preserve">Quoniam igitur centrũ grauitatis pyramidis in axe
              <lb/>
            cõſiſtit: </s>
            <s xml:space="preserve">ſuntq; </s>
            <s xml:space="preserve">d e, a f, b g, c h eiuſdẽ pyramidis axes: </s>
            <s xml:space="preserve">conue
              <lb/>
              <anchor type="note" xlink:label="note-0167-01a" xlink:href="note-0167-01"/>
            nient omnes in idẽ punctũ _k_, quod eſt grauitatis centrum.
              <lb/>
            </s>
            <s xml:space="preserve">Itaque animo concipiamus hanc pyramidem diuiſam in
              <lb/>
            quatuor pyramides, quarum baſes ſint ipſa pyramidis
              <lb/>
            triangula; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">axis pun-
              <lb/>
              <anchor type="handwritten" xlink:label="hd-0167-01a" xlink:href="hd-0167-01"/>
              <anchor type="figure" xlink:label="fig-0167-01a" xlink:href="fig-0167-01"/>
            ctum k quæ quidem py-
              <lb/>
            ramides inter ſe æquales
              <lb/>
            ſunt, ut demõſtrabitur.
              <lb/>
            </s>
            <s xml:space="preserve">Ducatur enĩ per lineas
              <lb/>
            d c, d e planum ſecãs, ut
              <lb/>
            ſit ipſius, & </s>
            <s xml:space="preserve">baſis a b c cõ
              <lb/>
            munis ſectio recta linea
              <lb/>
            c e l: </s>
            <s xml:space="preserve">eiuſdẽ uero & </s>
            <s xml:space="preserve">triã-
              <lb/>
            guli a d b ſitlinea d h l. </s>
            <s xml:space="preserve">
              <lb/>
            erit linea a l æqualis ipſi
              <lb/>
            l b: </s>
            <s xml:space="preserve">nam centrum graui-
              <lb/>
            tatis trianguli conſiſtit
              <lb/>
            in linea, quæ ab angulo
              <lb/>
            ad dimidiam baſim per-
              <lb/>
            ducitur, ex tertia deci-
              <lb/>
            ma Archimedis. </s>
            <s xml:space="preserve">quare
              <lb/>
              <anchor type="note" xlink:label="note-0167-02a" xlink:href="note-0167-02"/>
            triangulum a c l æquale
              <lb/>
            eſt triangulo b c l: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">propterea pyramis, cuius baſis trian-
              <lb/>
            gulum a c l, uertex d, eſt æqualis pyramidi, cuius baſis b c l
              <lb/>
            triangulum, & </s>
            <s xml:space="preserve">idem uertex. </s>
            <s xml:space="preserve">pyramides enim, quæ ab eodẽ
              <lb/>
              <anchor type="note" xlink:label="note-0167-03a" xlink:href="note-0167-03"/>
            </s>
          </p>
        </div>
      </text>
    </echo>