Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
< >
page |< < (30) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div254" type="section" level="1" n="87">
          <p>
            <s xml:id="echoid-s4278" xml:space="preserve">
              <pb o="30" file="0171" n="171" rhead="DE CENTRO GRAVIT. SOLID."/>
            pra demonſtratum eſt, ita eſſe cylindrum, uel cylindri por-
              <lb/>
              <note position="right" xlink:label="note-0171-01" xlink:href="note-0171-01a" xml:space="preserve">8. huius</note>
            tionem ad priſina, cuius baſis rectilinea figura, & </s>
            <s xml:id="echoid-s4279" xml:space="preserve">æqua-
              <lb/>
            lis altitudo. </s>
            <s xml:id="echoid-s4280" xml:space="preserve">ergo per conuerſionem rationis, ut circulus,
              <lb/>
            uel ellipſis ad portiones, ita conus, uel coni portio ad por-
              <lb/>
            tiones ſolidas. </s>
            <s xml:id="echoid-s4281" xml:space="preserve">quare conus uel coni portio ad portiones
              <lb/>
            ſolidas maiorem habet proportionem, quam g e ad e f: </s>
            <s xml:id="echoid-s4282" xml:space="preserve">& </s>
            <s xml:id="echoid-s4283" xml:space="preserve">
              <lb/>
            diuidendo, pyramis ad portiones ſolidas maiorem pro-
              <lb/>
            portionem habet, quam g f ad f e. </s>
            <s xml:id="echoid-s4284" xml:space="preserve">ſiat igitur q f ad f e
              <lb/>
            ut pyramis ad dictas portiones. </s>
            <s xml:id="echoid-s4285" xml:space="preserve">Itaque quoniam à cono
              <lb/>
            uel coni portione, cuius grauitatis centrum eſt f, aufer-
              <lb/>
            tur pyramis, cuius centrum e; </s>
            <s xml:id="echoid-s4286" xml:space="preserve">reliquæ magnitudinis,
              <lb/>
            quæ ex ſolidis portionibus conſtat, centrum grauitatis
              <lb/>
            erit in linea e f protracta, & </s>
            <s xml:id="echoid-s4287" xml:space="preserve">in puncto q. </s>
            <s xml:id="echoid-s4288" xml:space="preserve">quod fieri
              <lb/>
            non poteft: </s>
            <s xml:id="echoid-s4289" xml:space="preserve">eſt enim centrum grauitatis intra. </s>
            <s xml:id="echoid-s4290" xml:space="preserve">Conſtat
              <lb/>
            igitur coni, uel coni portionis grauitatis centrum eſſe pun
              <lb/>
            ctum e. </s>
            <s xml:id="echoid-s4291" xml:space="preserve">quæ omnia demonſtrare oportebat.</s>
            <s xml:id="echoid-s4292" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div258" type="section" level="1" n="88">
          <head xml:id="echoid-head95" xml:space="preserve">THEOREMA XIX. PROPOSITIO XXIII.</head>
          <p>
            <s xml:id="echoid-s4293" xml:space="preserve">
              <emph style="sc">Qvodlibet</emph>
            fruſtum à pyramide, quæ
              <lb/>
            triangularem baſim habeat, abſciſſum, diuiditur
              <lb/>
            in tres pyramides proportionales, in ea proportio
              <lb/>
            ne, quæ eſt lateris maioris baſis ad latus minoris
              <lb/>
            ipſi reſpondens.</s>
            <s xml:id="echoid-s4294" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4295" xml:space="preserve">Hoc demonſtrauit Leonardus Piſanus in libro, qui de-
              <lb/>
            praxi geometriæ inſcribitur. </s>
            <s xml:id="echoid-s4296" xml:space="preserve">Sed quoniam is adhucim-
              <lb/>
            preſſus non eſt, nos ipſius demonſtrationem breuíter
              <lb/>
            perſtringemus, rem ipſam ſecuti, non uerba. </s>
            <s xml:id="echoid-s4297" xml:space="preserve">Sit fru-
              <lb/>
            ſtum pyramidis a b c d e f, cuíus maior baſis triangulum
              <lb/>
            a b c, minor d e f: </s>
            <s xml:id="echoid-s4298" xml:space="preserve">& </s>
            <s xml:id="echoid-s4299" xml:space="preserve">iunctis a e, e c, c d, per line-
              <lb/>
            as a e, e c ducatur planum ſecans fruſtum: </s>
            <s xml:id="echoid-s4300" xml:space="preserve">itemque per
              <lb/>
            lineas e c, c d; </s>
            <s xml:id="echoid-s4301" xml:space="preserve">& </s>
            <s xml:id="echoid-s4302" xml:space="preserve">per c d, d a alia plana ducantur, quæ,
              <lb/>
            diuident fruſtum in tres pyramides a b c e, a d c e, d e f c.</s>
            <s xml:id="echoid-s4303" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>