Apollonius <Pergaeus>; Lawson, John, The two books of Apollonius Pergaeus, concerning tangencies, as they have been restored by Franciscus Vieta and Marinus Ghetaldus : with a supplement to which is now added, a second supplement, being Mons. Fermat's Treatise on spherical tangencies

Page concordance

< >
Scan Original
11 (vii)
12
13
14 (2)
15 (3)
16 (4)
17 (5)
18 (6)
19 (7)
20 (8)
21 (9)
22 (10)
23 (11)
24 (12)
25 (13)
26 (14)
27 (15)
28 (16)
29 (17)
30
31 (19)
32 (20)
33 (21)
34 (22)
35 (23)
36 (24)
37 (25)
38 (26)
39 (27)
40 (28)
< >
page |< < ((6)) of 161 > >|
    <echo version="1.0RC">
      <text xml:lang="en" type="free">
        <div xml:id="echoid-div15" type="section" level="1" n="15">
          <pb o="(6)" file="0018" n="18"/>
        </div>
        <div xml:id="echoid-div16" type="section" level="1" n="16">
          <head xml:id="echoid-head21" xml:space="preserve">PROBLEM VII.</head>
          <p>
            <s xml:id="echoid-s268" xml:space="preserve">
              <emph style="sc">Having</emph>
            two points A and B given in poſition, and likewiſe a right line EF
              <lb/>
            given in poſition, it is required to find the center of a circle, which ſhall paſs
              <lb/>
            through the given points and touch the given line.</s>
            <s xml:id="echoid-s269" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s270" xml:space="preserve">
              <emph style="sc">Case</emph>
            Iſt. </s>
            <s xml:id="echoid-s271" xml:space="preserve">When the points A and B are joined, ſuppoſe AB to be parallel to
              <lb/>
            EF: </s>
            <s xml:id="echoid-s272" xml:space="preserve">then biſecting AB in D, and through D drawing DC perpendicular to it,
              <lb/>
            DC will alſo be perpendicular to EF: </s>
            <s xml:id="echoid-s273" xml:space="preserve">draw a circle therefore which will paſs
              <lb/>
            through the three points A, B, andC, (by Euc. </s>
            <s xml:id="echoid-s274" xml:space="preserve">IV. </s>
            <s xml:id="echoid-s275" xml:space="preserve">5.) </s>
            <s xml:id="echoid-s276" xml:space="preserve">and it will be the circle
              <lb/>
            required: </s>
            <s xml:id="echoid-s277" xml:space="preserve">(by a Corollary from Euc. </s>
            <s xml:id="echoid-s278" xml:space="preserve">III. </s>
            <s xml:id="echoid-s279" xml:space="preserve">1. </s>
            <s xml:id="echoid-s280" xml:space="preserve">and another from Euc.
              <lb/>
            </s>
            <s xml:id="echoid-s281" xml:space="preserve">III. </s>
            <s xml:id="echoid-s282" xml:space="preserve">16.)</s>
            <s xml:id="echoid-s283" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s284" xml:space="preserve">
              <emph style="sc">Case</emph>
            2d. </s>
            <s xml:id="echoid-s285" xml:space="preserve">Suppoſe AB not parallel to EF, but being produced meets it in
              <lb/>
            E: </s>
            <s xml:id="echoid-s286" xml:space="preserve">then from EF take the line EC ſuch, that its ſquare may be equal to the
              <lb/>
            rectangle BEA, and through the points A, B, C, deſcribe a circle, and it will be
              <lb/>
            the circle required by Euc. </s>
            <s xml:id="echoid-s287" xml:space="preserve">III. </s>
            <s xml:id="echoid-s288" xml:space="preserve">37.</s>
            <s xml:id="echoid-s289" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s290" xml:space="preserve">
              <emph style="sc">This</emph>
            is Vieta’s Solution. </s>
            <s xml:id="echoid-s291" xml:space="preserve">But Mr. </s>
            <s xml:id="echoid-s292" xml:space="preserve">Thomas Simpſon having conſtructed this,
              <lb/>
            and ſome of the following, both in the Collection of Problems at the end of his
              <lb/>
            Algebra, and alſo among thoſe at the end of his Elements of Geometry, I ſhall
              <lb/>
            add one of his Conſtructions.</s>
            <s xml:id="echoid-s293" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s294" xml:space="preserve">
              <emph style="sc">Let</emph>
            A and B be the points given, and CD the given line: </s>
            <s xml:id="echoid-s295" xml:space="preserve">drawing AB and
              <lb/>
            biſecting it in F, through E let EF be drawn perpendicular to AB and meeting
              <lb/>
            CD in F: </s>
            <s xml:id="echoid-s296" xml:space="preserve">and from any point H in EF draw HG perpendicular to CD, and
              <lb/>
            having drawn BF, to the ſame apply HI = HG, and parallel thereto draw BK
              <lb/>
            meeting EF in K: </s>
            <s xml:id="echoid-s297" xml:space="preserve">then with center K and radius BK let a circle be deſcribed,
              <lb/>
            and the thing is done: </s>
            <s xml:id="echoid-s298" xml:space="preserve">join KA, and draw KL perpendicular to CD, then be-
              <lb/>
            cauſe of the parallel lines, HG: </s>
            <s xml:id="echoid-s299" xml:space="preserve">HI:</s>
            <s xml:id="echoid-s300" xml:space="preserve">: KL: </s>
            <s xml:id="echoid-s301" xml:space="preserve">KB; </s>
            <s xml:id="echoid-s302" xml:space="preserve">whence as HG and HI are
              <lb/>
            equal, KL and KB are likewiſe equal. </s>
            <s xml:id="echoid-s303" xml:space="preserve">But it is evident from the Conſtruction
              <lb/>
            that KA = KB, therefore KB = KL = KA.</s>
            <s xml:id="echoid-s304" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s305" xml:space="preserve">
              <emph style="sc">Because</emph>
            two equal lines HI and Hi may be applied from H to BF each
              <lb/>
            equal to HG, the Problem will therefore admit of two Solutions, as the Figure
              <lb/>
            ſhews: </s>
            <s xml:id="echoid-s306" xml:space="preserve">except in the caſe when one of the given points, A for inſtance, is given
              <lb/>
            in the line CD, for then the Problem becomes more ſimple, and admits but of
              <lb/>
            one conſtruction, as the center of the circle required muſt be in the line EF con-
              <lb/>
            tinued, as alſo in the perpendicular raiſed from A to CD, and therefore in their
              <lb/>
            common interſection: </s>
            <s xml:id="echoid-s307" xml:space="preserve">and this is the limit of poſſibility; </s>
            <s xml:id="echoid-s308" xml:space="preserve">for ſhould the line CD
              <lb/>
            paſs between the given points, the Problem is impoſſible.</s>
            <s xml:id="echoid-s309" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s310" xml:space="preserve">N. </s>
            <s xml:id="echoid-s311" xml:space="preserve">B. </s>
            <s xml:id="echoid-s312" xml:space="preserve">
              <emph style="sc">Tho</emph>
            ’ Vieta does not take notice that this Problem is capable of two
              <lb/>
            anſwers, yet this is as evident from his conſtruction, as from Mr. </s>
            <s xml:id="echoid-s313" xml:space="preserve">Simpſon’s, for
              <lb/>
            EC (the mean proportional between E B and EA) may be ſet off upon the given
              <lb/>
            line EF either way from the given point E.</s>
            <s xml:id="echoid-s314" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>