<img src="http://foxridge.mpiwg-berlin.mpg.de/permanent/einstein/annalen/Einst_Stati_de_1910/fulltext/img/Einst_Stati_de_191019x.png" alt=" cos f1 = sin f cos w , sin f cos w = sin f sin w , 1 1 sin f1 sin w1 = cos f . " class="par-math-display"/>
</center>
<p class="nopar"/>
<p class="noindent">Zum Werte der Kraft
<span class="overline">
<span class="cmmi-12">k</span>
<sub>
<span class="cmmi-8">x</span>
</sub>
<sup>
<span class="cmsy-8">'</span>
</sup>
</span>
, welche auf den bewegten Oszillator
<br/>
wirkt, führen uns die Transformationsformeln der Relativitäts-
<br/>
theorie
<sup>
<span class="cmr-8">1</span>
</sup>
</p>
<center class="par-math-display">
<img src="http://foxridge.mpiwg-berlin.mpg.de/permanent/einstein/annalen/Einst_Stati_de_1910/fulltext/img/Einst_Stati_de_191020x.png" alt=" ( v ) A'= A 1 - --cos f1 , ( c ) T '= T 1 + v-cos f1 , ( c ) n'= n 1- v-cos f , c 1 " class="par-math-display"/>
</center>
<p class="nopar"/>
<center class="par-math-display">
<img src="http://foxridge.mpiwg-berlin.mpg.de/permanent/einstein/annalen/Einst_Stati_de_1910/fulltext/img/Einst_Stati_de_191021x.png" alt=" cos f - v- ' ------1---c-- ' cos f1 = v- , w1 = w1 . 1- c cosf1 " class="par-math-display"/>
<img src="http://foxridge.mpiwg-berlin.mpg.de/permanent/einstein/annalen/Einst_Stati_de_1910/fulltext/img/Einst_Stati_de_191024x.png" alt="------- ( v ) A'2n0'T'= A2n0 T 1- 2-- cos f1 , c " class="par-math-display"/>
</center>
<p class="nopar"/>
<p class="noindent">oder, da wir alles auf die Eigenschwingung
<img src="http://foxridge.mpiwg-berlin.mpg.de/permanent/einstein/annalen/Einst_Stati_de_1910/fulltext/img/Einst_Stati_de_191025x.png" alt="------- ---- ( ) A'2n 'T'= A2n' v 1 - 2 v-cos f1 0 { 0(1+c cos f1)T ( c ---) } ---- v d A2 ( v ) = A2n0'T + n0'-- cos f1 ----- . 1 - 2 --cos f1 . c d n n0 T c " class="par-math-display"/>
</center>
<p class="nopar"/>
<p class="noindent">Wir drücken weiterhin die Größe