Einstein, Albert; Laub, Jakob. 'Über die im elektromagnetischen Felde auf ruhende Körper ausgeübten ponderomotorischen Kräfte'. Annalen der Physik, 26 (1908)

List of thumbnails

< >
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10
10
< >
page |< < of 10 > >|

wirkt, nicht die Induktion Bi, sondern die Feldstärke Hi maß-
gebend ist.

Um jeden Zweifel zu beseitigen, wollen wir noch ein Bei-
spiel behandeln, aus welchem man ersieht, daß das Prinzip
der Gleichheit von Wirkung und Gegenwirkung den von uns
gewählten Ansatz fordert.

Wir denken uns einen zylindrischen, von leerem Raum
umgebenen und vom Strom q durchflossenen Leiter, welcher
sich längs der X-Achse eines Koordinatensystems beiderseits
ins Unendliche erstreckt. Die Materialkonstanten des Leiters,
sowie die im folgenden auftretenden Feldvektoren seien von x
unabhängig, aber Funktionen von y und z. Der Leiter sei
ein magnetisch harter Körper und besitze eine Magnetisierung
quer zur X-Achse. Wir nehmen an, daß ein äußeres Feld
auf den Leiter nicht wirkt, daß also die magnetische Kraft H
in großen Entfernungen vom Leiter verschwindet.

Es ist klar, daß auf den Leiter als Ganzes keine pondero-
motorische Kraft wirkt, denn es würde zu dieser Wirkung
keine Gegenwirkung angebbar sein. Wir wollen nun zeigen,
daß bei Wahl unseres Ansatzes jene Kraft in der Tat ver-
schwindet. Die gesamte auf die Längeeinheit unseres Leiters
in der Richtung derZ-Achse wirkende Kraft läßt sich dar-
stellen gemäß den Gleichungen (7) und (9) in der Form:

       integral  (                      )         integral                 @ Hz-       @-Hz-            1- R  =       Qy  @ y  +   Qz  @ z   d f +     c qx Hy d f,
(10)

wobei df ein Flächenelement der Y Z-Ebene bedeutet. Wir
nehmen an, daß sämtliche in Betracht kommende Größen an
der Oberfläche des Leiters stetig sind. Wir behandeln zuerst
das erste Integral der Gleichung (10). Es ist:

                                                        (              ) Qy  @-Hz- +  Qz  @-Hz- =   @-Qy-Hz- +  @-Qz-Hz-  -  Hz    @ Qy-+  @-Qz-  .      @ y          @ z        @ y          @ z             @ y      @ z

Setzt man die rechte Seite dieser Gleichung in unser Integral
ein, so verschwinden bei Integration über die Y Z-Ebene die
beiden ersten Glieder, da die Kräfte im Unendlichen ver-
schwinden. Das dritte Glied kann unter Berücksichtigung:

div B  =   0

Text layer

  • Dictionary
  • Annotator

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index