Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
[Figure 41]
[Figure 42]
[Figure 43]
[Figure 44]
[Figure 45]
[Figure 46]
[Figure 47]
[Figure 48]
[Figure 49]
[Figure 50]
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
< >
page |< < of 213 > >|
74ARCHIMEDIS
LEMMA II.
Sint duæ portionis ſimiles, contentæ rectis lineis, &
rectangulorum conorum ſectionibus;
a b c quidem ma-
ior, cuius diameter b d;
e f c uero minor, cuius diameter
fg:
aptenturq; inter ſeſe, ita ut maior minorem includat
&
ſint earum baſes a c, e c in eadem recta linea, ut idẽ
punctum c ſit utriuſque terminus:
ſumatur deinde in ſe
ctione a b c quodlibet punctum b:
& iungatur h c. Di
co lineam h c ad partem ſui ipſius, quæ inter c, &
ſe-
ctionem e f c interiicitur, eam proportionẽ habere, quam
habet a c ad c e.
_Dvcatvr_ b c, quæ tranſibit per f. quoniam enim portiones
ſimiles ſunt, diametri cú baſibus æquales continent angulos.
quare
æquidiſtant inter ſe ſe b d, f g:
éſtq; b d ad a c, ut f g ad e c:
& permu-
f g, ut a c ad
c e:
hoc eſt
1115. quin-
ti.
ut earum di-