Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
< >
page |< < of 213 > >|
128FED. COMMANDINI ergo linea a g continenter in duas partes æquales diui-
111. decimi ſa, relinquetur tãdem pars aliqua n g, quæ minor eritl m.
Vtraque uero linearum a g, g b diuidatur in partes æqua-
les ipſi n g:
& per puncta diuiſionum plana oppoſitis pla-
225 huius nis æquidiſtantia ducantur.
erunt ſectiones figuræ æqua-
les, ac ſimiles ipſis a c e, b d f:
& totum priſma diuiſum erit
in priſmata æqualia, &
ſimilia: quæ cum inter ſe congruãt;
& grauitatis centra ſibi ipſis congruentia, reſpondentiaq;
habebunt.
Itaq:
ſunt magnitudi-
nes quædã æqua-
les ipſi n h, &
nu-
mero pares, qua-
rum centra gra-
cta linea conſti-
tuuntur:
duæ ue-
ro mediæ æqua-
les ſunt:
& quæ ex
utraque parte i-
pſarum ſimili --
ter æquales:
& æ-
quales rectæ li-
neæ, quæ inter
grauitatis centra
interiiciuntur.
quare ex corolla-
rio quintæ pro-
poſitionis primi
libri Archimedis
de centro graui-
tatis planorum;
magnitudinis ex his omnibus compoſitæ
centrum grauitatis eſt in medio lineæ, quæ magnitudi-
num mediarum centra coniungit.
at qui non ita res