Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Table of figures
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 151
>
[141. Figure]
Page: 191
[142. Figure]
Page: 192
[143. Figure]
Page: 193
[144. Figure]
Page: 194
[145. Figure]
Page: 201
[146. Figure]
Page: 201
[147. Figure]
Page: 201
[148. Figure]
Page: 201
[149. Figure]
Page: 203
[150. Figure]
Page: 205
[151. Figure]
Page: 208
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 151
>
page
|<
<
of 213
>
>|
FED. COMMANDINI
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
95
">
<
pb
file
="
0202
"
n
="
202
"
rhead
="
FED. COMMANDINI
"/>
<
p
>
<
s
xml:space
="
preserve
">ABSCINDATVR à portione conoidis rectanguli
<
lb
/>
a b c alia portio e b f, plano baſi æquidiſtante: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">eadem
<
lb
/>
portio ſecetur alio plano per axem; </
s
>
<
s
xml:space
="
preserve
">ut ſuperficiei ſectio ſit
<
lb
/>
parabole a b c: </
s
>
<
s
xml:space
="
preserve
">planorũ portiones abſcindentium rectæ
<
lb
/>
lineæ a c, e f: </
s
>
<
s
xml:space
="
preserve
">axis autem portionis, & </
s
>
<
s
xml:space
="
preserve
">ſectionis diameter
<
lb
/>
b d; </
s
>
<
s
xml:space
="
preserve
">quam linea e fin puncto g ſecet. </
s
>
<
s
xml:space
="
preserve
">Dico portionem co-
<
lb
/>
noidis a b c ad portionem e b f duplam proportionem ha-
<
lb
/>
bere eius, quæ eſt baſis a c ad baſim e f; </
s
>
<
s
xml:space
="
preserve
">uel axis d b ad b g
<
lb
/>
axem. </
s
>
<
s
xml:space
="
preserve
">Intelligantur enim duo coni, ſeu coni portiones
<
lb
/>
a b c, e b f, eãdem baſim, quam portiones conoidis, & </
s
>
<
s
xml:space
="
preserve
">æqua
<
lb
/>
lem habentes altitudinem. </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">quoniam a b c portio conoi
<
lb
/>
dis ſeſquialtera eſt coni, ſeu portionis coni a b c; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">portio
<
lb
/>
e b f coniſeu portionis coni e b feſt ſeſquialtera, quod de-
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0202-01a
"
xlink:href
="
fig-0202-01
"/>
monſtrauit Archimedes in propoſitionibus 23, & </
s
>
<
s
xml:space
="
preserve
">24 libri
<
lb
/>
de conoidibus, & </
s
>
<
s
xml:space
="
preserve
">ſphæroidibus: </
s
>
<
s
xml:space
="
preserve
">erit conoidis portio ad
<
lb
/>
conoidis portionem, ut conus ad conum, uel ut coni por-
<
lb
/>
tio ad coni portionem. </
s
>
<
s
xml:space
="
preserve
">Sed conus, uel coni portio a b c ad
<
lb
/>
conum, uel coni portionem e b f compoſitam proportio-
<
lb
/>
nem habet ex proportione baſis a c ad baſim e f, & </
s
>
<
s
xml:space
="
preserve
">ex pro-
<
lb
/>
portione altitudinis coni, uel coni portionis a b c ad alti-
<
lb
/>
tudinem ipſius e b f, ut nos demonſtrauimus in com men-
<
lb
/>
tariis in undecimam propoſitionem eiuſdem libri A rchi-
<
lb
/>
medis: </
s
>
<
s
xml:space
="
preserve
">altitudo autem ad altitudinem eſt, ut axis ad axem.
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">quod quidem in conis rectis perſpicuum eſt, in ſcalenis ue</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>