Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div214" type="section" level="1" n="72">
          <pb file="0130" n="130" rhead="FED. COMMANDINI"/>
          <p>
            <s xml:id="echoid-s3310" xml:space="preserve">SIT cylindrus, uel cylindri po rtio a c: </s>
            <s xml:id="echoid-s3311" xml:space="preserve">& </s>
            <s xml:id="echoid-s3312" xml:space="preserve">plano per a-
              <lb/>
            xem ducto ſecetur; </s>
            <s xml:id="echoid-s3313" xml:space="preserve">cuius ſectio ſit parallelogrammum a b
              <lb/>
            c d: </s>
            <s xml:id="echoid-s3314" xml:space="preserve">& </s>
            <s xml:id="echoid-s3315" xml:space="preserve">bifariam diuiſis a d, b c parallelogrammi lateribus,
              <lb/>
            per diuiſionum puncta e f planum baſi æquidiſtans duca-
              <lb/>
            tur; </s>
            <s xml:id="echoid-s3316" xml:space="preserve">quod faciet ſectionem, in cy lindro quidem circulum
              <lb/>
            æqualem iis, qui ſunt in baſibus, ut demonſtrauit Serenus
              <lb/>
            in libro cylindricorum, propoſitione quinta: </s>
            <s xml:id="echoid-s3317" xml:space="preserve">in cylindri
              <lb/>
            uero portione ellipſim æqualem, & </s>
            <s xml:id="echoid-s3318" xml:space="preserve">ſimilem eis, quæ ſunt
              <lb/>
            in oppoſitis planis, quod nos
              <lb/>
              <figure xlink:label="fig-0130-01" xlink:href="fig-0130-01a" number="86">
                <image file="0130-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0130-01"/>
              </figure>
            demonſtrauimus in commen
              <lb/>
            tariis in librum Archimedis
              <lb/>
            de conoidibus, & </s>
            <s xml:id="echoid-s3319" xml:space="preserve">ſphæroidi-
              <lb/>
            bus. </s>
            <s xml:id="echoid-s3320" xml:space="preserve">Dico centrum grauita-
              <lb/>
            tis cylindri, uel cylindri por-
              <lb/>
            tionis eſſe in plano e f. </s>
            <s xml:id="echoid-s3321" xml:space="preserve">Si enĩ
              <lb/>
            fieri poteſt, fit centrum g: </s>
            <s xml:id="echoid-s3322" xml:space="preserve">& </s>
            <s xml:id="echoid-s3323" xml:space="preserve">
              <lb/>
            ducatur g h ipſi a d æquidi-
              <lb/>
            ſtans, uſque ad e f planum.
              <lb/>
            </s>
            <s xml:id="echoid-s3324" xml:space="preserve">Itaque linea a e continenter
              <lb/>
            diuiſa bifariam, erit tandem
              <lb/>
            pars aliqua ipſius k e, minor
              <lb/>
            g h. </s>
            <s xml:id="echoid-s3325" xml:space="preserve">Diuidantur ergo lineæ
              <lb/>
            a e, e d in partes æquales ipſi
              <lb/>
            k e: </s>
            <s xml:id="echoid-s3326" xml:space="preserve">& </s>
            <s xml:id="echoid-s3327" xml:space="preserve">per diuiſiones plana ba
              <lb/>
            ſibus æquidiſtantia ducãtur. </s>
            <s xml:id="echoid-s3328" xml:space="preserve">
              <lb/>
            erunt iam ſectiones, figuræ æ-
              <lb/>
            quales, & </s>
            <s xml:id="echoid-s3329" xml:space="preserve">ſimiles eis, quæ ſunt
              <lb/>
            in baſibus: </s>
            <s xml:id="echoid-s3330" xml:space="preserve">atque erit cylindrus in cylindros diuiſus: </s>
            <s xml:id="echoid-s3331" xml:space="preserve">& </s>
            <s xml:id="echoid-s3332" xml:space="preserve">cy
              <lb/>
            lindri portio in portiones æquales, & </s>
            <s xml:id="echoid-s3333" xml:space="preserve">ſimiles ipſi k f. </s>
            <s xml:id="echoid-s3334" xml:space="preserve">reli-
              <lb/>
            qua ſimiliter, ut ſuperius in priſmate concludentur.</s>
            <s xml:id="echoid-s3335" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>