Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
< >
page |< < (21) of 213 > >|
15321DE CENTRO GRAVIT. SOLID. diuidendo figura ſolida inſcripta ad dictam exceſſus par-
tem, ut τ e ad e ρ.
& quoniam à cono, ſeu coni portione,
cuius grauitatis centrum eſt e, aufertur figura inſcripta,
cuius centrum ρ:
reſiduæ magnitudinis compoſitæ ex par
te exceſſus, quæ intra coni, uel coni portionis ſuperficiem
continetur, centrum grauitatis erit in linea ζ e protracta,
atque in puncto τ.
quod eſt abſurdum. cõſtat ergo centrũ
grauitatis coni, uel coni portionis, eſſe in axe b d:
quod de
monſcrandum propoſuimus.
THE OREMA XI. PROPOSITIO XV.
Cuiuslibet portionis ſphæræ uel ſphæroidis,
quæ dimidia maior non ſit:
itemq́; cuiuslibet por
tionis conoidis, uel abſciſſæ plano ad axem recto,
uel non recto, centrum grauitatis in axe con-
ſiſtit.
Demonſtratio ſimilis erit ei, quam ſupra in cono, uel co
ni portione attulimus, ne toties eadem fruſtra iterentur.