Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
< >
page |< < (11) of 213 > >|
13311DE CENTRO GRA VIT. SOLID.& per o ducatur o p ad k m ipſi h g æquidiſtans. Itaque li
nea h m bifariã uſque eò diuidatur, quoad reliqua ſit pars
quædam q m, minor o p.
deinde h m, m g diuidantur in
partes æ quales ipſi m q:
& per diuiſiones lineæ ipſi m K
æ quidiſtantes ducantur.
puncta uero, in quibus hæ trian-
gulorum latera ſecant, coniungantur ductis lineis r s, t u,
89[Figure 89] x y;
quæ baſi g h æquidiſtabunt. Quoniam enim lineæ g z,
h α ſunt æ quales:
itemq; æquales g m, m h: ut m g ad g z,
ita erit m h, ad h α:
& diuidendo, ut m z ad z g, ita m α ad
α h.
Sed ut m z ad z g, ita k r ad r g: & ut m α ad α h, ita k s
112. ſexti. ad s h.
quare ut κ r ad r g, ita k s ad s h. æ quidiſtant igitur
22I1. quinti inter ſe ſe r s, g h.
eadem quoque ratione demonſtrabimus
332. ſexti.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index