Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 8
[out of range]
>
[Note]
Page: 40
[Note]
Page: 40
[Note]
Page: 41
[Note]
Page: 42
[Note]
Page: 42
[Note]
Page: 42
[Note]
Page: 43
[Note]
Page: 43
[Note]
Page: 43
[Note]
Page: 44
[Note]
Page: 44
[Note]
Page: 44
[Note]
Page: 45
[Note]
Page: 45
[Note]
Page: 45
[Note]
Page: 45
[Note]
Page: 46
[Note]
Page: 46
[Note]
Page: 47
[Note]
Page: 47
[Note]
Page: 48
[Note]
Page: 48
[Note]
Page: 49
[Note]
Page: 49
[Note]
Page: 49
[Note]
Page: 52
[Note]
Page: 52
[Note]
Page: 52
[Note]
Page: 52
[Note]
Page: 53
<
1 - 8
[out of range]
>
page
|<
<
(19)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div79
"
type
="
section
"
level
="
1
"
n
="
32
">
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1083
"
xml:space
="
preserve
">
<
pb
o
="
19
"
file
="
0049
"
n
="
49
"
rhead
="
DE IIS QVAE VEH. IN AQVA.
"/>
eam proportionem babebit, quam a f ad a e. </
s
>
<
s
xml:id
="
echoid-s1084
"
xml:space
="
preserve
">Sed & </
s
>
<
s
xml:id
="
echoid-s1085
"
xml:space
="
preserve
">eandem habet
<
lb
/>
a s ad a r. </
s
>
<
s
xml:id
="
echoid-s1086
"
xml:space
="
preserve
">quare a s ipſi a x eſt æqualis, pars toti, quod fieri non
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0049-01
"
xlink:href
="
note-0049-01a
"
xml:space
="
preserve
">9. quinti</
note
>
poteſt. </
s
>
<
s
xml:id
="
echoid-s1087
"
xml:space
="
preserve
">Idem abſurdum ſequetur, ſi ponamus punctum t cadere ul-
<
lb
/>
tra lineam a c. </
s
>
<
s
xml:id
="
echoid-s1088
"
xml:space
="
preserve
">neceſſarium igitur est, ut in ipſam a c cadat. </
s
>
<
s
xml:id
="
echoid-s1089
"
xml:space
="
preserve
">quod
<
lb
/>
demonſtrandum propoſuimus.</
s
>
<
s
xml:id
="
echoid-s1090
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div82
"
type
="
section
"
level
="
1
"
n
="
33
">
<
head
xml:id
="
echoid-head38
"
xml:space
="
preserve
">LEMMA III.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1091
"
xml:space
="
preserve
">Sit parabole, cuius diameter a b: </
s
>
<
s
xml:id
="
echoid-s1092
"
xml:space
="
preserve
">atque eam cŏtingen
<
lb
/>
tes rectæ lineæ a c, b d; </
s
>
<
s
xml:id
="
echoid-s1093
"
xml:space
="
preserve
">a c quidem in puncto c, b d ue
<
lb
/>
ro in b: </
s
>
<
s
xml:id
="
echoid-s1094
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1095
"
xml:space
="
preserve
">per c ductis duabus lineis; </
s
>
<
s
xml:id
="
echoid-s1096
"
xml:space
="
preserve
">quarum alter a c e
<
lb
/>
diametro æquidiſtet, alter a c f æquidiſtet ipſi b d: </
s
>
<
s
xml:id
="
echoid-s1097
"
xml:space
="
preserve
">ſuma
<
lb
/>
tur quod uis punctum g in diametro: </
s
>
<
s
xml:id
="
echoid-s1098
"
xml:space
="
preserve
">fiatque ut f b, ad
<
lb
/>
b g, ita b g ad b h: </
s
>
<
s
xml:id
="
echoid-s1099
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1100
"
xml:space
="
preserve
">per g h ducantur g k l, h e m,
<
lb
/>
æquidiſtantes b d: </
s
>
<
s
xml:id
="
echoid-s1101
"
xml:space
="
preserve
">per m uero ducatur m n o ipſi a c
<
lb
/>
æquidistans, quæ diametrum ſecet in o: </
s
>
<
s
xml:id
="
echoid-s1102
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1103
"
xml:space
="
preserve
">per n ducta
<
lb
/>
n p uſque ad diametrum, ipſi b d æquidistet. </
s
>
<
s
xml:id
="
echoid-s1104
"
xml:space
="
preserve
">Dico h o
<
lb
/>
ipſius g b duplam eſſe.</
s
>
<
s
xml:id
="
echoid-s1105
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1106
"
xml:space
="
preserve
">V_EL_ igitur linea m n o ſccat diametrum in g, uel in alijs pun-
<
lb
/>
ctis: </
s
>
<
s
xml:id
="
echoid-s1107
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1108
"
xml:space
="
preserve
">ſi quidem ſecat in g, unum at que idem punctum duabus li-
<
lb
/>
teris go notabitur. </
s
>
<
s
xml:id
="
echoid-s1109
"
xml:space
="
preserve
">Itaque quoniam f c, p n, h e m ſibiipſis æqui
<
lb
/>
distant: </
s
>
<
s
xml:id
="
echoid-s1110
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1111
"
xml:space
="
preserve
">ipſi a c æquidiſtat m n o: </
s
>
<
s
xml:id
="
echoid-s1112
"
xml:space
="
preserve
">fient triangula a f c, o p n,
<
lb
/>
o h m inter ſe ſimilia. </
s
>
<
s
xml:id
="
echoid-s1113
"
xml:space
="
preserve
">quare erit o h ad h m, ut a f ad fc: </
s
>
<
s
xml:id
="
echoid-s1114
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1115
"
xml:space
="
preserve
">per-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0049-02
"
xlink:href
="
note-0049-02a
"
xml:space
="
preserve
">4. ſexti.</
note
>
mut ando o h ad a f, ut h m ad fc. </
s
>
<
s
xml:id
="
echoid-s1116
"
xml:space
="
preserve
">est autem quadratum h m ad
<
lb
/>
quadratum g l, ut linea h b ad lineam b g, ex uigeſima primi libri
<
lb
/>
conicorum: </
s
>
<
s
xml:id
="
echoid-s1117
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1118
"
xml:space
="
preserve
">quadratum g l ad quadratum fc, ut linea g b ad
<
lb
/>
ipſam b f: </
s
>
<
s
xml:id
="
echoid-s1119
"
xml:space
="
preserve
">ſuntq; </
s
>
<
s
xml:id
="
echoid-s1120
"
xml:space
="
preserve
">h b, b g, b f lineæ deinceps proportionales. </
s
>
<
s
xml:id
="
echoid-s1121
"
xml:space
="
preserve
">er-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0049-03
"
xlink:href
="
note-0049-03a
"
xml:space
="
preserve
">22. ſexti.
<
lb
/>
cor. 20. ſe
<
lb
/>
xti.</
note
>
go & </
s
>
<
s
xml:id
="
echoid-s1122
"
xml:space
="
preserve
">quadrata h m, g l, f c, & </
s
>
<
s
xml:id
="
echoid-s1123
"
xml:space
="
preserve
">ipſorum latera proportionalia
<
lb
/>
erunt. </
s
>
<
s
xml:id
="
echoid-s1124
"
xml:space
="
preserve
">atque idcirco ut quadratum h m ad quadratum g l, ita </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>