Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[81.] THE OREMA XII. PROPOSITIO XVI.
[82.] THE OREMA XIII. PROPOSITIO XVII.
[83.] THEOREMA XIIII. PROPOSITIO XVIII.
[84.] THEOREMA XV. PROPOSITIO XIX.
[85.] THE OREMA XVI. PROPOSITIO XX.
[86.] THEOREMA XVII. PROPOSITIO XXI.
[87.] THE OREMA XVIII. PROPOSITIO XXII.
[88.] THEOREMA XIX. PROPOSITIO XXIII.
[89.] PROBLEMA V. PROPOSITIO XXIIII.
[90.] THEOREMA XX. PROPOSITIO XXV.
[91.] THEOREMA XXI. PROPOSITIO XXVI.
[92.] THEOREMA XXII. PROPOSITIO XXVII.
[93.] PROBLEMA VI. PROPOSITIO XX VIII.
[94.] THE OREMA XXIII. PROPOSITIO XXIX.
[95.] THEOREMA XXIIII. PROPOSITIO XXX.
[96.] THEOREMA XXV. PROPOSITIO XXXI.
[97.] FINIS LIBRI DE CENTRO GRAVITATIS SOLIDORVM.
< >
page |< < (25) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div94" type="section" level="1" n="37">
          <p style="it">
            <s xml:id="echoid-s1428" xml:space="preserve">
              <pb o="25" file="0061" n="61" rhead="DE IIS QVAE VEH. IN AQVA."/>
            b ψ dupla ſit ψ d, erit d b ipſius b ψ ſeſquialtera. </s>
            <s xml:id="echoid-s1429" xml:space="preserve">& </s>
            <s xml:id="echoid-s1430" xml:space="preserve">quoniam e b ſeſ
              <lb/>
            quialtera est b r, ſequitur reliquam c d ipſius ψ r, boc est eius, quæ
              <lb/>
              <note position="right" xlink:label="note-0061-01" xlink:href="note-0061-01a" xml:space="preserve">12. quinti</note>
            uſque ad axem ſeſquialteram eſſe. </s>
            <s xml:id="echoid-s1431" xml:space="preserve">quare b c erit exceſſus, quo axis
              <lb/>
            maior est, quàm ſeſquialter eius, quæ uſque ad axem.</s>
            <s xml:id="echoid-s1432" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s1433" xml:space="preserve">_Quare f q minor éſtipſa b c.</s>
            <s xml:id="echoid-s1434" xml:space="preserve">]_ Nam cum portio ad bumi-
              <lb/>
              <note position="right" xlink:label="note-0061-02" xlink:href="note-0061-02a" xml:space="preserve">B</note>
            dum in grauitate proportionem habeat eandem, quàm quadratum
              <lb/>
            f q ad quadratum d b: </s>
            <s xml:id="echoid-s1435" xml:space="preserve">habeatq, minorem proportionem, quàm qua
              <lb/>
            dratum factum ab exceſſu, quo axis maior eſt, quàm ſeſquialter eius,
              <lb/>
            quæ uſque ad axem, ad quadratum ab axe; </s>
            <s xml:id="echoid-s1436" xml:space="preserve">boc eſt minorem, quàm
              <lb/>
            quadratum c b ad quadratum b d: </s>
            <s xml:id="echoid-s1437" xml:space="preserve">ponitur enim linea b d æqualis
              <lb/>
            axi: </s>
            <s xml:id="echoid-s1438" xml:space="preserve">quadratum f q ad quadratum d b proportionem minorem ha-
              <lb/>
            bebit, quàm quadratum c b ad idem b d quadratum. </s>
            <s xml:id="echoid-s1439" xml:space="preserve">ergo quadra-
              <lb/>
              <note position="right" xlink:label="note-0061-03" xlink:href="note-0061-03a" xml:space="preserve">8. quinti.</note>
            tum f q minus erit quadrato c b: </s>
            <s xml:id="echoid-s1440" xml:space="preserve">& </s>
            <s xml:id="echoid-s1441" xml:space="preserve">propterea linea f q ipſa b c
              <lb/>
            minor.</s>
            <s xml:id="echoid-s1442" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s1443" xml:space="preserve">_Etidcirco f minor ipſa b r.</s>
            <s xml:id="echoid-s1444" xml:space="preserve">]_ Quoniam enim c b ſeſquial-
              <lb/>
              <note position="right" xlink:label="note-0061-04" xlink:href="note-0061-04a" xml:space="preserve">C</note>
            tera eſt b r, & </s>
            <s xml:id="echoid-s1445" xml:space="preserve">f q ipſius f ſeſquialtera: </s>
            <s xml:id="echoid-s1446" xml:space="preserve">estq; </s>
            <s xml:id="echoid-s1447" xml:space="preserve">f q minor b c; </s>
            <s xml:id="echoid-s1448" xml:space="preserve">& </s>
            <s xml:id="echoid-s1449" xml:space="preserve">f
              <lb/>
              <note position="right" xlink:label="note-0061-05" xlink:href="note-0061-05a" xml:space="preserve">14. quin-
                <lb/>
              ti.</note>
            ipſa b r minor erit.</s>
            <s xml:id="echoid-s1450" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s1451" xml:space="preserve">_Itaque quoniam ponitur axis portionis cum ſuperficie_
              <lb/>
              <note position="right" xlink:label="note-0061-06" xlink:href="note-0061-06a" xml:space="preserve">D</note>
            _humidi facere angulum maiorem angulo b: </s>
            <s xml:id="echoid-s1452" xml:space="preserve">erit angulus_
              <lb/>
            _p y i angulo b maior.</s>
            <s xml:id="echoid-s1453" xml:space="preserve">]_ Nam cum linea p y ſuperficiei bumidi
              <lb/>
            æ quidistet; </s>
            <s xml:id="echoid-s1454" xml:space="preserve">uidelicet ipſi x s: </s>
            <s xml:id="echoid-s1455" xml:space="preserve">angulus p y i æqualis erit angulo, qui
              <lb/>
              <note position="right" xlink:label="note-0061-07" xlink:href="note-0061-07a" xml:space="preserve">29. primi</note>
            diametro portionis n o, & </s>
            <s xml:id="echoid-s1456" xml:space="preserve">linea x s continetur. </s>
            <s xml:id="echoid-s1457" xml:space="preserve">quare & </s>
            <s xml:id="echoid-s1458" xml:space="preserve">angulo
              <lb/>
            b maior erit.</s>
            <s xml:id="echoid-s1459" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s1460" xml:space="preserve">_Maiorem igitur proportionem habet quadratum p i ad_
              <lb/>
              <note position="right" xlink:label="note-0061-08" xlink:href="note-0061-08a" xml:space="preserve">E</note>
            _quadratum i y, quàm quadratum e ψ ad ψ b quadratu.</s>
            <s xml:id="echoid-s1461" xml:space="preserve">]_
              <lb/>
            Deſcribantur ſeorſum triangula p i y, e ψ b. </s>
            <s xml:id="echoid-s1462" xml:space="preserve">& </s>
            <s xml:id="echoid-s1463" xml:space="preserve">cum angulus p y i
              <lb/>
            maior ſit angulo e b ψ, ad lineam i y, atque ad punctum y in ea da-
              <lb/>
            tum fiat angulus u y i æqualis angulo e b ψ. </s>
            <s xml:id="echoid-s1464" xml:space="preserve">est autem angulus ad
              <lb/>
            i rectus æqualis recto ad ψ. </s>
            <s xml:id="echoid-s1465" xml:space="preserve">reliquus igitur y u i reliquo b c ψ est
              <lb/>
            æqualis. </s>
            <s xml:id="echoid-s1466" xml:space="preserve">quare linea u i ad lineam i y eandem proportionem ha-
              <lb/>
              <note position="right" xlink:label="note-0061-09" xlink:href="note-0061-09a" xml:space="preserve">4. ſexti.</note>
            bet, quam linea e ψ ad ψ b. </s>
            <s xml:id="echoid-s1467" xml:space="preserve">Sed linea p i, quæ maior est ipſa u i ad
              <lb/>
              <note position="right" xlink:label="note-0061-10" xlink:href="note-0061-10a" xml:space="preserve">8. quinti.</note>
            lineam in maiorem habet proportionem quam u i ad eandem. </s>
            <s xml:id="echoid-s1468" xml:space="preserve">ergo
              <lb/>
              <note position="right" xlink:label="note-0061-11" xlink:href="note-0061-11a" xml:space="preserve">13. quin-
                <lb/>
              ti.</note>
            p i ad i y maiorem proportionem habebit, quàm e ψ ad ψ b: </s>
            <s xml:id="echoid-s1469" xml:space="preserve">& </s>
            <s xml:id="echoid-s1470" xml:space="preserve">
              <lb/>
            propterea quadratum p i ad quadratum i y maiorem habebit, </s>
          </p>
        </div>
      </text>
    </echo>