Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of contents

< >
[4.8. Quod duo corpor a in æqualia eiuſdem materia in diuerſis medijs eandem uelocitatis proportionem retinebunt. CAP. VIII.]
[4.9. Anrectè Aristoteles diſeruerit de proportionibus mo-tuum in uacuo. CAP. IX.]
[4.10. Quòd in uacuo corpor a eiuſdem materiæ æquali uelocita-te mouerentur. CAP.X.]
[4.11. Corpora licet inæqualia eiuſdem materiæ & figuræ, ſireſiſten-tias habuerint ponderibus proportionales æqualiter mouebuntur. CAP. XI.]
[4.12. Maior hic demonſir atur eſſe proportio ponder is corpor is den ſioris ad pondus minus denſi in medijs dẽſioribus, quam ſit eorundem corporum in medio minus denſo, nec corporum ponder a ſeruare proportionem denſitatis mediorum. CAP. XII.]
[4.13. Longe aliter ueritatem ſe habere quam Aristoteles doceat in fine libri ſeptimi phyſicorum. CAP. XIII.]
[4.14. Quid ſequatur ex ſupradistis. CAP. XIIII.]
[4.15. Numrestè ſenſerit Philoſophus reſistentias proportionales eße cum corporibus mobilibus. CAP. XV.]
[4.16. Fdipſum aliter demonſtr atur. CAP. XVI.]
[4.17. De alio Aristo. lapſu. CAP. XVII.]
[4.18. Quomodo dignoſcatur proportio uelocitatis duorum ſimilium corporum omogeniorum inaqualium. CAP. XVIII.]
[4.19. Quam ſit inanis ab Ariſtotele ſuſcepta demonſtratio quod uacuum non detur. CAP. XIX.]
[4.20. Non ſatis dilucidè Ariſtotelem de loco ratiocinatum fuiße. CAP. XX.]
[4.21. Vtrum bene Aristoteles ſenſerit de infinito. CAP. XXI.]
[4.22. Exagitatur ab Ariſtotele adductatemporis definitio. CAP. XXII.]
[4.23. Motum rectum eſſe continuum, uel dißentiente Ariſtotele. CAP. XXIII.]
[4.24. Idem uir grauisſimus an bene ſenſerit de motibus corporum uiolentis & natur alibus. CAP. XXIIII.]
[4.25. Motum rectum & natur alem non eſſe primo & per ſe quicquid Ariſtoteli uiſum ſit. CAP. XXV.]
[4.26. Omne corpus eſſe in loco proprio graue, ut Aristoteli placuit, non eft admittendum. CAP. XXVI.]
[4.27. Haud admittendam opinionem Principis Peripateticorum de circulo, & ſpbæra. CAP. XXVII.]
[4.28. Occultam fuiße grauisſimo Stagirit & canſam ſcintilla-tionis ſtellarum. CAP. XXVIII.]
[4.29. Daricontinuum infinitum motum ſuper rectam at que finitam lineam. CAP. XXIX.]
[4.30. Non eſſe ſolis calorem à motu localι ipſius corporis ſolaris, ut Ariſtoteli placuit. CAP. XXX.]
[4.31. Vnde caloris ſolis prode at incrementum & state, et byeme decrementum. CAP. XXXI.]
[4.32. Nullum corpus ſenſus expers à ſono offendi, præterquam Aristoteles crediderit. CAP. XXXII.]
[4.33. Pytagoreorum opinionem de ſonitu corporum cælestium non fuiſſe ab Aristotele ſublatam. CAP. XXXIII.]
[4.34. Deraro et denſo nonnulla, minus diligenter à Peripateticis perpenſa. CAP. XXXIIII.]
[4.35. Motum rectum curuo poſſe comparari etiam diſentiente Ariſtotele. CAP. XXXV.]
[4.36. Minus ſufficienter exploſam fuiſſe ab Ariſtotele opinionem cre-dentium plures mundos exiſtere. CAP. XXXVI.]
[4.37. Anrectè loquutus ſit Phyloſopbus de extenſione luminis per uacuum. CAP. XXXVII.]
< >
page |< < (43) of 445 > >|
THEOREM. ARIT.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div134" type="math:theorem" level="3" n="67">
              <p>
                <s xml:id="echoid-s568" xml:space="preserve">
                  <pb o="43" rhead="THEOREM. ARIT." n="55" file="0055" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0055"/>
                ita vt ſimul prouenientibus in ſummam collectis huius fummæ ad primum nume-
                  <lb/>
                rum propoſitum proportio futura ſit ea quæ eſt tertij ad ſecundum. </s>
                <s xml:id="echoid-s569" xml:space="preserve">Rectè dimidium
                  <lb/>
                primi numeri in ſeipſum multiplicant, ex quo quadrato ſecundum numerum detra
                  <lb/>
                hunt, tum reſidui radicem ſumunt, quam iungentes, & detrahentes ex dimidio
                  <lb/>
                primi, partes quæſitas habent, cætera ex neceſsitate ſubſequuntur, prout nunc a
                  <lb/>
                me docebitur.</s>
              </p>
              <p>
                <s xml:id="echoid-s570" xml:space="preserve">Exempli gratia, proponitur numerus .20. in duas partes diuidendus, quibus po
                  <lb/>
                ſtea mutuò diuiſis, & per ſummam prouenientium diuiſa ſumma quadratorum,
                  <lb/>
                dent
                  <reg norm="ſecundum" type="context">ſecundũ</reg>
                numerum propoſitum .36. nam reliqua conſequuntur. </s>
                <s xml:id="echoid-s571" xml:space="preserve">Itaque .10.
                  <lb/>
                dimidium primi in ſeipſum multiplicatur, & ex quadrato .100. eruitur numerus .36.
                  <lb/>
                nempe ſecundus propoſitus reſidui porrò .64. quadrata radix .8. fumitur, quam con
                  <lb/>
                iungimus & detrahimus ex dimidio primi ſcilicet .10. ex quo partes quæſitæ dabun
                  <lb/>
                tur .18. et .2. quæ mutuo diuiſæ dabunt ſuorum prouenientium ſummam .9. cum no-
                  <lb/>
                na parte, per quam diuidentes .328. ſummam quadratorum ipſarum partium,
                  <lb/>
                exactè dabitur numerus .36. qui fuit ſecundò propoſitus. </s>
                <s xml:id="echoid-s572" xml:space="preserve">Tum ſi per ſingu-
                  <lb/>
                las iam inuentas partes quilibet numerus diuiſus fuerit, verbi gratia .72. ſumma pro
                  <lb/>
                uenientium erit .40. qui num@rus eandem proportionem cum primo nempe .20. ſer
                  <lb/>
                uabit, quam tertius propoſitus .72. cum ſecundo .36.</s>
              </p>
              <p>
                <s xml:id="echoid-s573" xml:space="preserve">Quod vt ſpeculemur, primus numerus ſignificetur linea
                  <var>.n.e.</var>
                ita diuidendus à
                  <lb/>
                puncto
                  <var>.o.</var>
                vt diuiſa parte
                  <var>.n.o.</var>
                per
                  <var>.o.e.</var>
                et
                  <var>.o.e.</var>
                per
                  <var>.n.o.</var>
                & per ſummam prouenien-
                  <lb/>
                tium diuiſa ſumma quadratorum
                  <var>.n.o.</var>
                et
                  <var>.o.e.</var>
                detur ſecundus numerus notatus linea
                  <var type="line">.
                    <lb/>
                  q.K</var>
                . </s>
                <s xml:id="echoid-s574" xml:space="preserve">Porrò meminiſſe oportet quòd .26. theoremate probatum fuit vltimum hoc
                  <lb/>
                proueniens æquale producto partium inter ſe futurum, nempe producto
                  <var>.n.o.</var>
                in
                  <var>.o.
                    <lb/>
                  e.</var>
                quod ſignificetur rectangulo
                  <var>.n.e</var>
                . </s>
                <s xml:id="echoid-s575" xml:space="preserve">Itaque datis
                  <var>.n.e.</var>
                et
                  <var>.q.K.</var>
                ſi .45. theorema conſu-
                  <lb/>
                luerimus, partes
                  <var>.n.o.</var>
                et
                  <var>.o.e.</var>
                cognoſcemus.</s>
              </p>
              <p>
                <s xml:id="echoid-s576" xml:space="preserve">Proponitur deinde tertius quilibetnumerus, verbi gratia
                  <var>.x.</var>
                diuidendus per
                  <var>.o.e.</var>
                  <lb/>
                et
                  <var>.o.n.</var>
                qui ſi diuidatur per
                  <var>.o.e.</var>
                dabit pro
                  <lb/>
                ueniens
                  <var>.b.o</var>
                . </s>
                <s xml:id="echoid-s577" xml:space="preserve">Si verò per
                  <var>.n.o.</var>
                proueniens
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0055-01a" xlink:href="fig-0055-01"/>
                erit
                  <var>.d.n.</var>
                nunc aſſerimus
                  <reg norm="ſummam" type="context">ſummã</reg>
                duorum
                  <lb/>
                horum prouenientium, ſic primo nume-
                  <lb/>
                ro
                  <var>.n.e.</var>
                dato proportionatam eſſe, ſicut
                  <lb/>
                tertius
                  <var>.x.</var>
                  <reg norm="ſecundo" type="context">ſecũdo</reg>
                  <var>.q.K</var>
                . </s>
                <s xml:id="echoid-s578" xml:space="preserve">Producatur enim li-
                  <lb/>
                nea
                  <var>.d.n.</var>
                donec
                  <var>.n.q.</var>
                æqualis ſit
                  <var>.o.b.</var>
                ex
                  <lb/>
                quo
                  <var>.q.d.</var>
                erit ſumma vltimò prouenien-
                  <lb/>
                tium: </s>
                <s xml:id="echoid-s579" xml:space="preserve">item producatur
                  <var>.e.n.</var>
                donec
                  <var>.n.u.</var>
                æ-
                  <lb/>
                qualis ſit
                  <var>.o.e.</var>
                  <reg norm="termineturque" type="simple">termineturq́</reg>
                rectangulum
                  <var>.
                    <lb/>
                  q.u.</var>
                quod tertio numero propoſito
                  <var>.x.</var>
                vt
                  <lb/>
                patet, æquale erit, </s>
                <s xml:id="echoid-s580" xml:space="preserve">quare ex .15. ſexti aut .
                  <lb/>
                20. ſeptimi eadem erit proportio
                  <var>.d.n.</var>
                ad
                  <lb/>
                  <var>n.q.</var>
                quæ
                  <var>.u.n.</var>
                nempe
                  <var>.o.e.</var>
                ad
                  <var>.o.n.</var>
                & com-
                  <lb/>
                ponendo
                  <var>.d.q.</var>
                ad
                  <var>.q.n.</var>
                ſicut
                  <var>.e.n.</var>
                ad
                  <var>.n.o.</var>
                &
                  <lb/>
                permutando
                  <var>.d.q.</var>
                ad
                  <var>.e.n.</var>
                quæ
                  <var>.q.n.</var>
                hoc eſt
                  <var>.
                    <lb/>
                  b.o.</var>
                ad
                  <var>.o.n.</var>
                nempe ſicut
                  <var>.b.e.</var>
                ad
                  <var>.e.n.</var>
                ſuperficialem, ex prima ſexti aut .18. vel .19.
                  <lb/>
                ſeptimi, ſed rectangulum
                  <var>.e.n.</var>
                conſtitutum fuit æquale numero
                  <var>.q.K</var>
                . </s>
                <s xml:id="echoid-s581" xml:space="preserve">itaque verum
                  <lb/>
                eſt propoſitum.</s>
              </p>
              <div xml:id="echoid-div134" type="float" level="4" n="1">
                <figure xlink:label="fig-0055-01" xlink:href="fig-0055-01a">
                  <image file="0055-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0055-01"/>
                </figure>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>