Stevin, Simon, Mathematicorum hypomnematum... : T. 4: De Statica : cum appendice et additamentis, 1605

Table of contents

< >
[Item 1.]
[2.] TOMVS QVARTVS MATHEMATICORVM HYPOMNEMATVM DE STATICA. Quo comprehenduntur ea in quibus ſeſe exercuit ILLVSTRISSIMVS Illuſtriſsimo & antiquiſsimo ſtemmate ortus Princeps ac Dominus M*AURITIUS* Princeps Auraicus, Comes Naſſoviæ, Catti melibocorum, Viandę, Moerſii, & c. Marchio Veræ & Vliſſingæ, & c. Dominus Civitatis Gravæ & ditionis Cuyc, Civitatum Vyt, Daesburch, & c. Gubernator Geldriæ, Hollandiæ, Zelandiæ, Weſ@friſiæ, Zutphaniæ, Vltrajecti, Tranſiſalanæ, & c. Imperator exer-citus Provinciarum fœdere conſociata-rum Belgii, Archithalaſſus Generalis, & c. Conſcriptus à S*IMONE* S*TEVINO* Brugenſi.
[3.] LVGODINI BATAVORVM, Ex Officinâ Ioannis Patii, Academiæ Typographi. Anno cI@ I@ cv.
[4.] BREVIARIVM.
[5.] LIBER PRIMVS STATIC AE DE STATICÆ ELEMENTIS.
[6.] LIBRI I.
[7.] PARS PRIOR DE DEFINITIONIBVS. I DEFINITIO.
[8.] DECLARATIO.
[9.] 2 DEFINITIO.
[10.] DECLARATIO.
[11.] 3 DEFINITIO.
[12.] DECLARATIO.
[13.] 4 DEFINITIO.
[14.] DECLARATIO.
[15.] 5 DEFINITIO.
[16.] DECLARATIO.
[17.] NOTATO.
[18.] 6 DEFINITIO.
[19.] DECLARATIO.
[20.] 7 DEFINITIO.
[21.] DECLARATIO.
[22.] 8 DEFINITIO.
[23.] DECLARATIO.
[24.] 9 DEFINITIO.
[25.] DECLARATIO.
[26.] 10 DEFINITIO.
[27.] DECLARATIO.
[28.] 11 DEFINITIO.
[29.] DECLARATIO.
[30.] 12 DEFINITIO.
< >
page |< < (6) of 197 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div13" type="section" level="1" n="12">
          <pb o="6" file="527.01.006" n="6" rhead="1 L*IBER* S*TATICÆ*"/>
        </div>
        <div xml:id="echoid-div14" type="section" level="1" n="13">
          <head xml:id="echoid-head20" xml:space="preserve">4 DEFINITIO.</head>
          <p>
            <s xml:id="echoid-s61" xml:space="preserve">Gravitati centrum eſt ex quo, vel ſola cogitatione,
              <lb/>
            ſuſpenſum corpus quemcumque ſitum dederis, illum re-
              <lb/>
            tinet.</s>
            <s xml:id="echoid-s62" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div15" type="section" level="1" n="14">
          <head xml:id="echoid-head21" xml:space="preserve">DECLARATIO.</head>
          <p>
            <s xml:id="echoid-s63" xml:space="preserve">ABC globus eſto, æquabili ubique & </s>
            <s xml:id="echoid-s64" xml:space="preserve">materiâ & </s>
            <s xml:id="echoid-s65" xml:space="preserve">pondere,
              <lb/>
              <figure xlink:label="fig-527.01.006-01" xlink:href="fig-527.01.006-01a" number="3">
                <image file="527.01.006-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/527.01.006-01"/>
              </figure>
            quem cogitatione noſtra ex centro D, lineâ E D ſuſpenſum
              <lb/>
            fingamus, qui quoquo modo verſatus, motusq́ue, quem de-
              <lb/>
            deris ſitum, retinebit, ſi enim B ad locum A aliæq́ue partes
              <lb/>
            alio transferantur immotæ manebunt, ſecus materia inæqua-
              <lb/>
            bilis eſſet, & </s>
            <s xml:id="echoid-s66" xml:space="preserve">alio loco denſior graviorq́ue, alio verò rarior & </s>
            <s xml:id="echoid-s67" xml:space="preserve">
              <lb/>
            levior, quod contra theſin eſſet. </s>
            <s xml:id="echoid-s68" xml:space="preserve">D itaque, ex definitionis ſen-
              <lb/>
            tentia, centrum gravitatis fuerit globi A B C. </s>
            <s xml:id="echoid-s69" xml:space="preserve">Idem judicium
              <lb/>
            deomnibus eſto, nullum enim non corpus inordinatæ figuræ
              <lb/>
            & </s>
            <s xml:id="echoid-s70" xml:space="preserve">materiæ inæquabilis gravitatis ſit ſive figuræ ordinatæ, & </s>
            <s xml:id="echoid-s71" xml:space="preserve">
              <lb/>
            æquabilis gravitatis, hujuſmodi punctum habet, à quo ſuſpenſum eandem po-
              <lb/>
            ſitionem ſervat quæ data fuit, quod gravitatis centrum appellatur. </s>
            <s xml:id="echoid-s72" xml:space="preserve">Vt autem
              <lb/>
            ſuis proprietatibus magis innoteſcat hoc addemus. </s>
            <s xml:id="echoid-s73" xml:space="preserve">Gravitatis centrum in cor-
              <lb/>
            poribus, ut columnis, ſphæris ſphæroïdibus, & </s>
            <s xml:id="echoid-s74" xml:space="preserve">quinque ordinatis, & </s>
            <s xml:id="echoid-s75" xml:space="preserve">c. </s>
            <s xml:id="echoid-s76" xml:space="preserve">ſi ſunt
              <lb/>
            ex materia æquabiliter ubique ponderoſa, idem eſt cum figuræ vel magnitu-
              <lb/>
            dinis puncto quod Geometricè centrum appellatur. </s>
            <s xml:id="echoid-s77" xml:space="preserve">Corporum vero inæqua-
              <lb/>
            biliter ponderosâ hæc puncta magnitudinis & </s>
            <s xml:id="echoid-s78" xml:space="preserve">gravitatis eodem loco non ha-
              <lb/>
            bent. </s>
            <s xml:id="echoid-s79" xml:space="preserve">In pyramidibus enim, & </s>
            <s xml:id="echoid-s80" xml:space="preserve">inordinatis ſolidis non magnitudinis centrum,
              <lb/>
            ſed gravitatis tantum eſt. </s>
            <s xml:id="echoid-s81" xml:space="preserve">Multa etiam corpora ſunt, ut annuli, unci, pelves, & </s>
            <s xml:id="echoid-s82" xml:space="preserve">
              <lb/>
            alia hujuſmodi, quæ gravitatis centrum, non intra verũ extra materiam habĕt.</s>
            <s xml:id="echoid-s83" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s84" xml:space="preserve">In definitione, vel ſolâ cogitatione, dicitur, quod in definitioneilla poni de-
              <lb/>
            bent, quæ definiti naturam maximè declarant, quod & </s>
            <s xml:id="echoid-s85" xml:space="preserve">in Pappus 8 lib. </s>
            <s xml:id="echoid-s86" xml:space="preserve">ubi
              <lb/>
            gravitatis centrum definit, cogitatione commodiſſime fecit. </s>
            <s xml:id="echoid-s87" xml:space="preserve">Etiam iſto pacto
              <lb/>
            definire licet: </s>
            <s xml:id="echoid-s88" xml:space="preserve">Gravitatis centrum eſt, per quod plana quavis ducta corpus in duas
              <lb/>
            partes aquilibres dividunt. </s>
            <s xml:id="echoid-s89" xml:space="preserve">Quid autem æquilibritas ſive ęquipondium ſit 11 de-
              <lb/>
            finitione dicitur.</s>
            <s xml:id="echoid-s90" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div17" type="section" level="1" n="15">
          <head xml:id="echoid-head22" xml:space="preserve">5 DEFINITIO.</head>
          <p>
            <s xml:id="echoid-s91" xml:space="preserve">Gravitatis corporeæ diameter eſt recta infinita per gra-
              <lb/>
            vitatis centrum acta: </s>
            <s xml:id="echoid-s92" xml:space="preserve">Et gravitatis diameter horizonti
              <lb/>
            perpendicularis, diameter gravitatis pendula appellatur.</s>
            <s xml:id="echoid-s93" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div18" type="section" level="1" n="16">
          <head xml:id="echoid-head23" xml:space="preserve">DECLARATIO.</head>
          <p>
            <s xml:id="echoid-s94" xml:space="preserve">Vtin 4
              <emph style="sub">æ</emph>
            definitionis figurâ, quævis recta infinita per gravitatis centrum D
              <lb/>
            acta, corporis A B C diameter gravitatis appellatur: </s>
            <s xml:id="echoid-s95" xml:space="preserve">Verum gravitatis diame-
              <lb/>
            ter ad horizontem recta ut A D gravitatis diameter pendula dicatur.</s>
            <s xml:id="echoid-s96" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div19" type="section" level="1" n="17">
          <head xml:id="echoid-head24" xml:space="preserve">NOTATO.</head>
          <p style="it">
            <s xml:id="echoid-s97" xml:space="preserve">In priore editione gravitatis diameter definita nobis fuit infinita per gravitatis
              <lb/>
            ſue cent
              <unsure/>
            r@ m pendens, ſufficere enim propoſitæ nobis ſcriptioni videbatur. </s>
            <s xml:id="echoid-s98" xml:space="preserve">Verum-
              <lb/>
            eni@@ver@ in ſequenti additamenio ponderoſorũ genera non paulo diligentius </s>
          </p>
        </div>
      </text>
    </echo>