Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[Figure 41]
[Figure 42]
[Figure 43]
[Figure 44]
[Figure 45]
[Figure 46]
[Figure 47]
[Figure 48]
[Figure 49]
[Figure 50]
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
< >
page |< < (29) of 213 > >|
6929DE IIS QVAE VEH. IN AQVA. interdũ quidem ita, ut baſis in humidum magis
11C demergatur:
interdum uero ita, ut ſuperficiem
22D humidi nullo modo contingat;
ſecundum pro-
33E portionem, quam habet ad humidum in grauita-
te.
Eorum quæ dicta ſunt, ſingula inferius de-
monſtrabuntur.
SIT portio qualis dicta eſt: & ſecta ipſa plano per axẽ.
recto ad ſuperficiem humidi, ſectio ſit a p o l rectanguli co
ni ſeccio:
axis portionis, & ſectionis diameter b d: ſece-
turq;
b d in puncto quidem _k_ ita, ut b k dupla ſitipſius
_k_ d:
in c uero ita, ut b d ad K C proportionẽ habeat ean-
dem, quam quindecim ad quatuor.
conſtat igitur k c ma-
44F iorem eſſe, quàm quæ uſque ad axem.
Sit ei quæ uſque ad
55G axem æqualis k r:
& ipſius k r ſeſquialtera d s. Eſt autem
66H&
s b ſeſquial-
tera ipſius b r.
Itaque iũgatur
a b, &
per c du
catur c e per-
b d, quæ lineã
a b in puncto
e ſecet:
& per
e ducatur e z
æquidiſtãs b d.

Rurſus ipſa a b
bifariã in t di-
uiſa, ducatur t
h eidem b d æ-
quidiſtans:
&
intelligantur rectanguli coni ſectiones deſcriptæ a e i