Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
< >
page |< < of 213 > >|
86ARCHIMEDIS ipſi my æquidiſtans. Demonſtrandum eſt portionem in
11G humidum demiſſam, inclinatamq;
adeo, ut baſis ipſius nõ
contingat humidum, inclinatam conſiſtere ita, ut baſis ſu-
perficiem humidi nullo modo contingat:
& axis cum ea fa
ciat angulum angulo χ maiorem.
Demittatur enim in hu-
midum, conſiſtatq;
ita, ut baſis ipſius in uno puncto cõtin
gat humidi ſuperficiem:
& ſecta ipſa portione per axem,
plano ad humidi ſuperficiem recto;
ſuperficiei quidẽ por-
tionis ſectio ſit a p o l rectanguli coni ſectio:
ſuperficiei
humidi ſectio ſit a o:
axis autem portionis, & ſectionis dia
meter b d:
& ſecetur b d in punctis k r, ut dictum eſt: du-
22H catur etiam p g æquidiſtans ipſi a o, quæ ſectionem a p o l
contingat in p:
atque ab eo puncto ducatur p t æquidiſtãs
ipſi b d;
& p s ad b d perpendicularis. Itaque quoniam
portio ad humidum in grauitate eam proportionem ha-
bet, quam qua-
53[Figure 53] dratũ, quod fit
à linea χ ad qua
dratum b d:
quã
uero proportio
nem habet por-
tio ad humidũ,
eandem pars ip
ſius demerſa ha
bet ad totã por
tionẽ:
& quam
pars demerſa ad
totam, eandem
habet quadra-
tum t p ad b d
quadratum:
erit
linea ψ æqualis
ipſi t p.
quare & lineæ m n, p t; itemq, portiones a m q,
a p o inter ſe ſunt æquales.
Quòd cumin portionibus
33K

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index