Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[61.] ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.
[62.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.
[63.] PETITIONES.
[64.] THEOREMA I. PROPOSITIO I.
[65.] THEOREMA II. PROPOSITIO II.
[66.] THE OREMA III. PROPOSITIO III.
[67.] THE OREMA IIII. PROPOSITIO IIII.
[68.] ALITER.
[69.] THEOREMA V. PROPOSITIO V.
[70.] COROLLARIVM.
[71.] THEOREMA VI. PROPOSITIO VI.
[72.] THE OREMA VII. PROPOSITIO VII.
[73.] THE OREMA VIII. PROPOSITIO VIII.
[74.] THE OREMA IX. PROPOSITIO IX.
[75.] PROBLEMA I. PROPOSITIO X.
[76.] PROBLEMA II. PROPOSITIO XI.
[77.] PROBLEMA III. PROPOSITIO XII.
[78.] PROBLEMA IIII. PROPOSITIO XIII.
[79.] THEOREMA X. PROPOSITIO XIIII.
[80.] THE OREMA XI. PROPOSITIO XV.
[81.] THE OREMA XII. PROPOSITIO XVI.
[82.] THE OREMA XIII. PROPOSITIO XVII.
[83.] THEOREMA XIIII. PROPOSITIO XVIII.
[84.] THEOREMA XV. PROPOSITIO XIX.
[85.] THE OREMA XVI. PROPOSITIO XX.
[86.] THEOREMA XVII. PROPOSITIO XXI.
[87.] THE OREMA XVIII. PROPOSITIO XXII.
[88.] THEOREMA XIX. PROPOSITIO XXIII.
[89.] PROBLEMA V. PROPOSITIO XXIIII.
[90.] THEOREMA XX. PROPOSITIO XXV.
< >
page |< < (10) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div214" type="section" level="1" n="72">
          <pb o="10" file="0131" n="131" rhead="DE CENTRO GRA VIT. SOLID."/>
          <figure number="87">
            <image file="0131-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0131-01"/>
          </figure>
        </div>
        <div xml:id="echoid-div216" type="section" level="1" n="73">
          <head xml:id="echoid-head80" xml:space="preserve">THE OREMA VIII. PROPOSITIO VIII.</head>
          <p>
            <s xml:id="echoid-s3336" xml:space="preserve">Cuiuslibet priſmatis, & </s>
            <s xml:id="echoid-s3337" xml:space="preserve">cuiuslibet cylindri, uel
              <lb/>
            cylindri portionis grauitatis centrum in medio
              <lb/>
            ipſius axis conſiſtit.</s>
            <s xml:id="echoid-s3338" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3339" xml:space="preserve">Sit primum a f priſma æ quidiſtantibus planis contentũ,
              <lb/>
            quod ſolidum parallelepipedum appellatur: </s>
            <s xml:id="echoid-s3340" xml:space="preserve">& </s>
            <s xml:id="echoid-s3341" xml:space="preserve">oppoſito-
              <lb/>
            rum planorum c f, a h, d a, f g latera bifariam diuidantur in
              <lb/>
            punctis k l m n o p q r s t u x: </s>
            <s xml:id="echoid-s3342" xml:space="preserve">& </s>
            <s xml:id="echoid-s3343" xml:space="preserve">per diuiſiones ducantur
              <lb/>
            plana κ n, o r, s x. </s>
            <s xml:id="echoid-s3344" xml:space="preserve">communes autem eorum planorum ſe-
              <lb/>
            ctiones ſint lineæ y z, θ φ, χ ψ: </s>
            <s xml:id="echoid-s3345" xml:space="preserve">quæ in puncto ω conueniãt.
              <lb/>
            </s>
            <s xml:id="echoid-s3346" xml:space="preserve">erit ex decima eiuſdem libri Archimedis parallelogrammi
              <lb/>
            c f centrum grauitatis punctum y; </s>
            <s xml:id="echoid-s3347" xml:space="preserve">parallelogrammi a </s>
          </p>
        </div>
      </text>
    </echo>