Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[61.] ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.
[62.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.
[63.] PETITIONES.
[64.] THEOREMA I. PROPOSITIO I.
[65.] THEOREMA II. PROPOSITIO II.
[66.] THE OREMA III. PROPOSITIO III.
[67.] THE OREMA IIII. PROPOSITIO IIII.
[68.] ALITER.
[69.] THEOREMA V. PROPOSITIO V.
[70.] COROLLARIVM.
[71.] THEOREMA VI. PROPOSITIO VI.
[72.] THE OREMA VII. PROPOSITIO VII.
[73.] THE OREMA VIII. PROPOSITIO VIII.
[74.] THE OREMA IX. PROPOSITIO IX.
[75.] PROBLEMA I. PROPOSITIO X.
[76.] PROBLEMA II. PROPOSITIO XI.
[77.] PROBLEMA III. PROPOSITIO XII.
[78.] PROBLEMA IIII. PROPOSITIO XIII.
[79.] THEOREMA X. PROPOSITIO XIIII.
[80.] THE OREMA XI. PROPOSITIO XV.
[81.] THE OREMA XII. PROPOSITIO XVI.
[82.] THE OREMA XIII. PROPOSITIO XVII.
[83.] THEOREMA XIIII. PROPOSITIO XVIII.
[84.] THEOREMA XV. PROPOSITIO XIX.
[85.] THE OREMA XVI. PROPOSITIO XX.
[86.] THEOREMA XVII. PROPOSITIO XXI.
[87.] THE OREMA XVIII. PROPOSITIO XXII.
[88.] THEOREMA XIX. PROPOSITIO XXIII.
[89.] PROBLEMA V. PROPOSITIO XXIIII.
[90.] THEOREMA XX. PROPOSITIO XXV.
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div234" type="section" level="1" n="80">
          <pb file="0154" n="154" rhead="FED. COMMANDINI"/>
        </div>
        <div xml:id="echoid-div235" type="section" level="1" n="81">
          <head xml:id="echoid-head88" xml:space="preserve">THE OREMA XII. PROPOSITIO XVI.</head>
          <p>
            <s xml:id="echoid-s3850" xml:space="preserve">In ſphæra, & </s>
            <s xml:id="echoid-s3851" xml:space="preserve">ſphæroide idem eſt grauitatis, & </s>
            <s xml:id="echoid-s3852" xml:space="preserve">
              <lb/>
            figuræ centrum.</s>
            <s xml:id="echoid-s3853" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3854" xml:space="preserve">Secetur ſphæra, uel ſphæroid
              <gap/>
            no per axem ducto;
              <lb/>
            </s>
            <s xml:id="echoid-s3855" xml:space="preserve">quod ſectionem faciat circulum,
              <gap/>
            ellipſim a b c d, cuius
              <lb/>
            diameter, & </s>
            <s xml:id="echoid-s3856" xml:space="preserve">ſphæræ, uelſphæroidis axis d b; </s>
            <s xml:id="echoid-s3857" xml:space="preserve">& </s>
            <s xml:id="echoid-s3858" xml:space="preserve">centrume. </s>
            <s xml:id="echoid-s3859" xml:space="preserve">
              <lb/>
            Dico e grauitatis etiam centrum eſſe. </s>
            <s xml:id="echoid-s3860" xml:space="preserve">ſecetur enim altero
              <lb/>
            plano per e, ad planum ſecans recto, cuius fectio ſit circu-
              <lb/>
            lus circa diametrum a c. </s>
            <s xml:id="echoid-s3861" xml:space="preserve">erunt a d c, a b c dimidiæ portio-
              <lb/>
            nes ſphæræ, uel fphæroidis. </s>
            <s xml:id="echoid-s3862" xml:space="preserve">& </s>
            <s xml:id="echoid-s3863" xml:space="preserve">quoniam portionis a d c gra
              <lb/>
            uitatis centrum eſt in linea d, & </s>
            <s xml:id="echoid-s3864" xml:space="preserve">centrum portionis a b c in
              <lb/>
            ipſa b e; </s>
            <s xml:id="echoid-s3865" xml:space="preserve">totius ſphæræ, uel ſphæroidis grauitatis centrum
              <lb/>
            in axe d b conſiſtet. </s>
            <s xml:id="echoid-s3866" xml:space="preserve">Quòd ſi portionis a d c centrum graui
              <lb/>
            tatis ponatur eſſe f. </s>
            <s xml:id="echoid-s3867" xml:space="preserve">& </s>
            <s xml:id="echoid-s3868" xml:space="preserve">fiat ipſi f e æqualis e g: </s>
            <s xml:id="echoid-s3869" xml:space="preserve">punctũ g por
              <lb/>
              <figure xlink:label="fig-0154-01" xlink:href="fig-0154-01a" number="107">
                <image file="0154-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0154-01"/>
              </figure>
            tionis a b c centrum erit. </s>
            <s xml:id="echoid-s3870" xml:space="preserve">ſolidis enim figuris ſimilibus & </s>
            <s xml:id="echoid-s3871" xml:space="preserve">
              <lb/>
              <note position="left" xlink:label="note-0154-01" xlink:href="note-0154-01a" xml:space="preserve">per 2. pe-
                <lb/>
              titionem</note>
            æqualibus inter ſe aptatis, & </s>
            <s xml:id="echoid-s3872" xml:space="preserve">centra grauitatis ipſarum in-
              <lb/>
            ter fe aptentur neceſſe eſt. </s>
            <s xml:id="echoid-s3873" xml:space="preserve">ex quo fit, ut magnitudinis, quæ
              <lb/>
              <note position="left" xlink:label="note-0154-02" xlink:href="note-0154-02a" xml:space="preserve">4 Arch-
                <lb/>
              medis.</note>
            ex utriſque cõſtat, hoc eſt ipſius ſphæræ, uel ſphæroidis gra
              <lb/>
            uitatis centrum ſitin medio lineæ f g, uidelicet in e. </s>
            <s xml:id="echoid-s3874" xml:space="preserve">Sphæ-
              <lb/>
            ræ igitur, uel ſphæroidis grauitatis centrum eſtidem, quod
              <lb/>
            centrum figuræ.</s>
            <s xml:id="echoid-s3875" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>