Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of contents

< >
[3.23. De uer a cauſa .30. quæstionis. CAP. XXIIII.]
[3.24. Deratione .35. & ultimæ quæstionis. CAP. XXV.]
[4. DISPVTATIONES DE QVIBVSDAM PLACITIS ARISTOTELIS.]
[4.1. Qualiter & ubi Ariſtoteles de uelocitate motuum natura-lium localium aliter tractauerit quam nos ſentiamus. CAP.I.]
[4.2. Quædam ſupponenda ut conſtet cur circa uelocit atem motuum natur alium localium ab Ariſtotelis placitis recedamus. CAP. II.]
[4.3. Poſſe uelocitatem alicuius corporis proportionem contrariam in diuerſis medijs habere cum denſitate eorum. CAP. III.]
[4.4. Oſcitanter ab Ariſtotele nonnibil prolatum cap 8. lib. 4 Phyſicorum. CAP. IIII.]
[4.5. Exempla dictorum. CAP.V.]
[4.6. Quod proportiones ponderum eiuſdem corporis in diuerſis medijs pro portiones eorum mediorum denſit atum non ſeruant. Unde ne-ceßariò inæquales proportiones uelocitatum producuntur. CAP. VI.]
[4.7. Corpora grauia aut leuia eiuſdem figur æ et materiæ ſed inæqualis magnitudinis, in ſuis motibus natur alibus uelocit atis, in eo dem medio, proportionem longè diuerſam ſeruatura eße quam Aristoteliuiſum fuerit. CAP. VII.]
[4.8. Quod duo corpor a in æqualia eiuſdem materia in diuerſis medijs eandem uelocitatis proportionem retinebunt. CAP. VIII.]
[4.9. Anrectè Aristoteles diſeruerit de proportionibus mo-tuum in uacuo. CAP. IX.]
[4.10. Quòd in uacuo corpor a eiuſdem materiæ æquali uelocita-te mouerentur. CAP.X.]
[4.11. Corpora licet inæqualia eiuſdem materiæ & figuræ, ſireſiſten-tias habuerint ponderibus proportionales æqualiter mouebuntur. CAP. XI.]
[4.12. Maior hic demonſir atur eſſe proportio ponder is corpor is den ſioris ad pondus minus denſi in medijs dẽſioribus, quam ſit eorundem corporum in medio minus denſo, nec corporum ponder a ſeruare proportionem denſitatis mediorum. CAP. XII.]
[4.13. Longe aliter ueritatem ſe habere quam Aristoteles doceat in fine libri ſeptimi phyſicorum. CAP. XIII.]
[4.14. Quid ſequatur ex ſupradistis. CAP. XIIII.]
[4.15. Numrestè ſenſerit Philoſophus reſistentias proportionales eße cum corporibus mobilibus. CAP. XV.]
[4.16. Fdipſum aliter demonſtr atur. CAP. XVI.]
[4.17. De alio Aristo. lapſu. CAP. XVII.]
[4.18. Quomodo dignoſcatur proportio uelocitatis duorum ſimilium corporum omogeniorum inaqualium. CAP. XVIII.]
[4.19. Quam ſit inanis ab Ariſtotele ſuſcepta demonſtratio quod uacuum non detur. CAP. XIX.]
[4.20. Non ſatis dilucidè Ariſtotelem de loco ratiocinatum fuiße. CAP. XX.]
[4.21. Vtrum bene Aristoteles ſenſerit de infinito. CAP. XXI.]
[4.22. Exagitatur ab Ariſtotele adductatemporis definitio. CAP. XXII.]
[4.23. Motum rectum eſſe continuum, uel dißentiente Ariſtotele. CAP. XXIII.]
[4.24. Idem uir grauisſimus an bene ſenſerit de motibus corporum uiolentis & natur alibus. CAP. XXIIII.]
[4.25. Motum rectum & natur alem non eſſe primo & per ſe quicquid Ariſtoteli uiſum ſit. CAP. XXV.]
[4.26. Omne corpus eſſe in loco proprio graue, ut Aristoteli placuit, non eft admittendum. CAP. XXVI.]
[4.27. Haud admittendam opinionem Principis Peripateticorum de circulo, & ſpbæra. CAP. XXVII.]
< >
page |< < (180) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div387" type="chapter" level="2" n="4">
            <div xml:id="echoid-div416" type="section" level="3" n="19">
              <p>
                <s xml:id="echoid-s2136" xml:space="preserve">
                  <pb o="180" rhead="IO. BAPT. BENED." n="192" file="0192" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0192"/>
                dicto corpori
                  <var>.Q</var>
                . </s>
                <s xml:id="echoid-s2137" xml:space="preserve">Nunquam remanſuram ſuam totalem grauitatem
                  <var>.a.b.</var>
                in quolibet
                  <lb/>
                ex-dictis medijs. </s>
                <s xml:id="echoid-s2138" xml:space="preserve">Nunc ſi quærat à me Ariſtoteles proportionem velocitatis corpo-
                  <lb/>
                ris
                  <var>.Q.</var>
                per vacuum ad velocitatem dicti corporis per plenum, ego ei proponam pro-
                  <lb/>
                portionem ipſius
                  <var>.a.b.</var>
                ad
                  <var>.a.e.</var>
                exempli gratia, dicens,
                  <reg norm="quod" type="simple">ꝙ</reg>
                  <reg norm="quemadmodum" type="wordlist">quẽadmodum</reg>
                  <var>.a.b.</var>
                maius eſt
                  <lb/>
                ip ſo
                  <var>.a.e.</var>
                ſic etiam corpus
                  <var>.Q.</var>
                velocius erit in vacuo, quàm in pleno, dicti autem ple-
                  <lb/>
                ni denſitatem appellabimus
                  <var>.e.b</var>
                . </s>
                <s xml:id="echoid-s2139" xml:space="preserve">Ariſtoteles dicet nunc,
                  <reg norm="quod" type="simple">ꝙ</reg>
                aliud quoddam medium
                  <lb/>
                in eadem proportione ſubtilius ipſo
                  <var>.e.b.</var>
                deſumatur; </s>
                <s xml:id="echoid-s2140" xml:space="preserve">quemadmodum
                  <var>.a.e.</var>
                minus eſt
                  <lb/>
                ipſo
                  <var>.a.b.</var>
                ſit ergo iſtud
                  <var>.i.b.</var>
                in quo Ariſtoteles credit corpus Q. futurum tam velox ut
                  <lb/>
                in vacuo, in quo aberrat,
                  <reg norm="quia" type="simple">ꝗa</reg>
                proportio velocitatis corporis
                  <var>.Q.</var>
                in medio
                  <var>.i.b.</var>
                ad velo
                  <lb/>
                citatem eiuſdem in medio
                  <lb/>
                  <var>e.b.</var>
                ita ſe hàbebit, ut
                  <var>.i.a.</var>
                ad
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0192-01a" xlink:href="fig-0192-01"/>
                  <var>e.a.</var>
                ex ultimo ſuppoſito ca
                  <lb/>
                pit .2. huius libr. quæ minor
                  <lb/>
                eſſet ea, quæ eſt
                  <var>.a.b.</var>
                ad
                  <var>.a.e.</var>
                ex .8. lib. quinti Eucli.</s>
              </p>
              <div xml:id="echoid-div416" type="float" level="4" n="1">
                <figure xlink:label="fig-0192-01" xlink:href="fig-0192-01a">
                  <image file="0192-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0192-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div418" type="section" level="3" n="20">
              <head xml:id="echoid-head281" style="it" xml:space="preserve">Non ſatis dilucidè Ariſtotelem de loco ratiocinatum fuiße.</head>
              <head xml:id="echoid-head282" xml:space="preserve">CAP. XX.</head>
              <p>
                <s xml:id="echoid-s2141" xml:space="preserve">QVæ Ariſtoteles de loco ſcribit multas in ſe continent difficultates. </s>
                <s xml:id="echoid-s2142" xml:space="preserve">Primum,
                  <lb/>
                cap .4. lib. 4. phyſicorum ait, omne corpus eſſe in ſuo proprio loco, ſupponen
                  <lb/>
                do vnum centrum pro loco grauium, et unam circunferentiam pro loco leuium cor
                  <lb/>
                porum. </s>
                <s xml:id="echoid-s2143" xml:space="preserve">Sed quomodo punctum poteſt eſſe locus ipſius corporis, cum omni dimen
                  <lb/>
                ſione
                  <reg norm="capacitateque" type="simple">capacitateq́;</reg>
                ſit denudatum? </s>
                <s xml:id="echoid-s2144" xml:space="preserve">vnde ſi
                  <reg norm="centrum" type="context">centrũ</reg>
                locus eſſet corporum grauium, om
                  <lb/>
                nia dicta corpora grauia, extra proprium locum exiſterent, quia nullum ex iis eſt,
                  <reg norm="quod" type="simple">ꝙ</reg>
                  <lb/>
                ſit in centro. </s>
                <s xml:id="echoid-s2145" xml:space="preserve">Adde quod neque hoc cum loci definitione ab ipſo poſita conſentiret
                  <lb/>
                cum ipſe dicat in eodem cap. locum eſſe ſuperſiciem quandam, & non interuallum,
                  <lb/>
                licet huiuſmodi definitio falſa appareat primo ex
                  <reg norm="inconuenienti" type="context">incõuenienti</reg>
                falſo, quod ipſe hinc
                  <lb/>
                ſequuturum dicit, ideſt, quod ſi locus interuallum eſſet, infinita loca exiſterent, quod
                  <lb/>
                reuera nec ob hanc cauſam inconueniens exiſtit, quia eodem planè modo quo ali-
                  <lb/>
                quod corpus poteſt eſſe infinita corpora, (quod ipſe diceret in potentia) ſic etiam in
                  <lb/>
                teruallum aliquod poſſet eſſe infinita interualla. </s>
                <s xml:id="echoid-s2146" xml:space="preserve">Cum autem dicat ſuperficies cor-
                  <lb/>
                poris ambientis eſſe locum eius corporis, quod continetur, cogitur dicere lineam,
                  <lb/>
                quæ circundat ſuperficiem, ſuperficiei locum eſſe, & puncta ipſius lineæ, quod reue
                  <lb/>
                ra abſurdum eſt. </s>
                <s xml:id="echoid-s2147" xml:space="preserve">Locus corporis eſt interuallum illud eadem magnitudine & figu-
                  <lb/>
                ra, qua corpus ipſum pręditum eſt, quod ſi non eſſet, ſed eſſet ſuperficies, quemad-
                  <lb/>
                modum Ariſtoteles voluit, maximum inconueniens ſequeretur, ſcilicet æquales lo-
                  <lb/>
                cos capere inęqualia corpora, aut corpora æqualia, locos inęquales occupare, quod
                  <lb/>
                ſcitu facillimum eſt, cum Theon ſuper Ptolomęi Almageſtum iam probarit ſphæ-
                  <lb/>
                ricam ſuperficiem maius interuallum corporeum continere, quàm aliam
                  <reg norm="quanuis" type="context">quãuis</reg>
                ſu-
                  <lb/>
                perficiem dictæ ſphęricæ æqualem, vnde poſſent facilè reperiri duo loci, quorum al-
                  <lb/>
                ter millies altero maior eſſet, capaces tamen corporum æqualium, aut reperiri duo
                  <lb/>
                corpora, quorum alterum millies maius eſſet altero, quę tamen corpora apta eſſent
                  <lb/>
                ad occupandos locos ęquales, quamuis Ariſtoteles dicat, locum, neque maiorem ne
                  <lb/>
                que minorem eſſe debere locato. </s>
                <s xml:id="echoid-s2148" xml:space="preserve">Sed interualla corporea ęqualia à quauis figura
                  <lb/>
                terminata, continebunt ſemper corpora ęqualia. </s>
                <s xml:id="echoid-s2149" xml:space="preserve">Corporeum igitur interuallum eſt </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>